import polars as pl
# Create a DataFrame
= pl.DataFrame({
df 'A': [1, 2, 3],
'B': [4, 5, 6]
})
Python Data Types Reference Guide
Built-in Data Types
Numeric Types
- int: Integer numbers, e.g.,
42
- float: Floating-point numbers, e.g.,
3.14
- complex: Complex numbers, e.g.,
2 + 3j
Sequence Types
- list: Mutable ordered sequences, e.g.,
[1, 2, 3]
- tuple: Immutable ordered sequences, e.g.,
(1, 2, 3)
- str: Immutable sequences of Unicode characters, e.g.,
'hello'
Mapping Types
- dict: Mutable unordered collections of key-value pairs, e.g.,
{'a': 1, 'b': 2}
Polars Objects
See the Polars User Guide Here. Specific Data Structure Documentation Here.
- DataFrame: Tabular data structure with labeled axes (rows and columns)
- Built on top of Apache Arrow
- Efficient handling of large datasets
- Easy integration with Pandas and NumPy
- Example:
- Series: One-dimensional labeled array capable of holding any data type
- Similar to a single column of a DataFrame
- Efficient computation and transformation operations
- Example:
import polars as pl
# Create a Series
= pl.Series([1, 2, 3, 4, 5]) s
xarray Objects
See the xarray User Guide Here. Specific Data Structure Documentation Here
- DataArray: Multi-dimensional labeled array
- Data structure for storing n-dimensional data arrays
- Supports labeled dimensions, coordinates, and attributes
- Example:
import xarray as xr
# Create a DataArray
= xr.DataArray(
da =[[1, 2], [3, 4]],
data=("x", "y"),
dims={"x": [10, 20], "y": ["a", "b"]}
coords )
- Dataset: Multi-dimensional array with labeled data variables and dimensions
- Container for multiple DataArrays sharing the same dimensions
- Useful for storing and manipulating multiple related variables
- Example:
import xarray as xr
# Create a Dataset
= xr.Dataset({
ds 'temperature': ([('x', 'y'), [[1, 2], [3, 4]]]),
'precipitation': ([('x', 'y'), [[0.1, 0.2], [0.3, 0.4]]])
})